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Introduction 

I see teachers in one corner basing their decisions on what others in their 
programs have done and relying on trial and error to address basically the 
same questions I faced in the early 1970s. … And, in the researchers’ 
world, it is more than obvious that few of the research-based publications 
from our “ivory towers” reach the hands of teachers or tutors. Even when 
they do, it often seems that researchers do not have the appropriate 
answers for the pressing and immediate questions of practitioners or 
governments (Quigley, p.3).   

Although Allan Quigley says he is more optimistic now about the relationships between 
researchers, governments responsible for policy around literacy, and teachers and tutors, 
he paints a picture of recent history that I recognize, from a teacher’s perspective.  It was 
in the spirit of trying to connnect myself and other practioners with research that I began, 
in 2005, a project funded by the National Office of Literacy and Learning (NOLL), 
Human Resources and Social Development Canada. The question I attempted to answer 
through my work on this project was “How can ABE math instructors in BC apply 
research findings to their practice?” While the question was big, and each of its many 
parts was big, it came from a personal question: How can I apply research findings to my 
own teaching practice?  

For more than 15 years, I have been teaching math as part of the Adult Basic Education 
(ABE) program at Malaspina University-College, at the Cowichan Campus in Duncan, 
BC. Mainly I have taught at the fundamentals level1, with occasional forays into 
introductory algebra. During that time, and based on previous teaching experience, I tried 
many different methods and texts in my attempt to teach so that students would 
understand math and, I hoped, learn to like it. During that period, being too busy 
teaching, I didn’t have time to search systematically for relevant research material, and it 
wasn’t until the recent explosion of material online that searching from a remote location 
became at all feasible. Hence, when I received funding for this project, I welcomed the 
luxury of spending time away from the classroom, to read, think, talk, and write about 
teaching math.  

This review is meant for adult numeracy practitioners, and, as such, will concentrate on 
topics related to instructional methods, and will not take up issues such as general 
educational policy or program administration, frameworks, and curriculum. While these 
latter issues have a huge impact on the work of the numeracy instructor, they are largely 
“givens” in the work and life of practitioners, and as such beyond the scope of this 
review. 

By “numeracy instruction” I mean instruction in those areas of math covered by the 
Fundamentals and part of the Intermediate scale in the BC Articulation agreement, or, 

                                                 
1 “Fundamental” and “Intermediate” are the names given to the first levels in Adult Basic Education 
programs in BC. In the area of math, they cover such topics as operations with whole numbers, fractions, 
decimals, per cents, and area, perimeter and volume of two- and three- dimensional shapes, and reading and 
constructing charts and graphs. 
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more generally, the math needed for daily life as a consumer or a worker: operations with 
whole numbers, fractions, decimals and per cents; measurement of time, length, area and 
volume; and reading charts and graphs.  

Situating myself  
My experiences both as a student and as a teacher of numeracy, as well as my teaching 
philosophy, have shaped the interpretations I bring to this review of approaches to 
numeracy instruction. I went to school for 12 years in a system that taught math concepts 
abstractly, with little connection to real life, where most students were expected to learn, 
by rote, algorithms that they didn’t understand. Fortunately, I did understand the 
concepts, and the abstract approach suited my style. Indeed, I grew to love math for the 
beauty of number patterns and the elegance of mathematical reasoning. I did not, 
however, have any idea of the difficulties many of my fellow elementary and high school 
students faced until I began teaching math in ABE. There I met them, all grown up. I 
began to teach them, not by tying math to their own experience, but by trying to make the 
abstract more concrete, as I describe in an article on working with student resistance to 
using math manipulatives (Nonesuch, 2005b).  

As an instructor of both numeracy and literacy, I believe that a mindfulness about the 
power relationship between teacher and student, a willingness to share power, and a sense 
that the locus of control of learning is best situated with the student, all combine to make 
a fruitful learning experience and a teaching experience that has more joy than 
frustration, and where both teaching and learning result in more satisfaction than guilt or 
resentment. My experience as an instructor has been nearly all in ABE programs in the 
community college system, rather than in the school district system, or in workplace 
education or in the not-for-profit sector. 

After my experience with writing/refusing to write a literature review in a previous 
research project (Niks, Allen, Davies, McRae and Nonesuch, 2003), I came to writing 
this review with mixed feelings. I am not an academic (I have a BA [Hons English]), and 
the research literature was foreign territory to me. Some pieces I gave up on because I 
could not understand the language of post-structuralist analysis or psychological or 
sociological or statistical jargon. Because I was unfamiliar with the literature, I found it 
difficult to follow when one academic situated him/herself in the discussion by minute 
comparisons of definitions or philosophies of other academics, although as I read more 
and more, I came to have a nodding acquaintance with some of them. Nonetheless, I 
found the process of reading the literature interesting, especially research that was based 
on first-hand teaching experience, where I could use my own experience and my contact 
with other instructors as a touchstone, rather than having to rely on other things I had 
read.  

However, it is with trepidation I offer this literature review to the world. I know I have 
been truthful here: I have not deliberately refused to consider anything I found, and I 
have been clear that I am using my knowledge and experience of some 20 years of 
teaching as a basis for my interpretations of what I read. Nonetheless, I am aware of my 
lack of formal training in doing research, in reading research, and my lack of familiarity 
with the research in the numeracy field; perhaps, like Samuel Johnson’s dog that walked 
on his hind legs, the wonder is not that I do it badly, but that I do it at all.  
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My Reading 
I found many studies to support the idea that the research on numeracy instruction for 
adults is so lacking or flawed that it is impossible to say what is effective practice; 
nonetheless, many academics and instructors have written extensively about principles 
and strategies and best practices, and I found substantial agreement that teaching for 
understanding rather than memory is the best approach, with many strategies for 
implementing that approach. My own experience, however, tells me that in BC, at least, 
math is not generally taught using such principles of effective practice, and indeed, I 
found some studies that echo my experience. When I consulted with about 100 
practitioners in BC early this year (Nonesuch, forthcoming, Chapter 1) I found that nearly 
all of them had heard of most of the principles and strategies supported by the literature, 
so it was not a lack of knowledge that prevented them from applying the recommended 
procedures in their practice. I searched out some answers to this conundrum, what makes 
it difficult to apply recommended principles and strategies to numeracy instruction? What 
complications are behind those statements of best practice that seem so straightforward? 
What revolutions in thought and attitude would be necessary to implement strategies that 
seem as safe and as conservative as many of those put forth by established writers? The 
answers I found make up the bulk of this review. 

Not enough research to identify effective numeracy practice 
As a neophyte in reading the literature, I approached it in a haphazard way—many library 
and other database searches, reading things as I found them, or as they came in on 
interlibrary loan, and reading on much too broad a scale for my purposes; later, of course, 
I got a little more systematic. In those early days, I found much interesting material 
before I came upon my first literature review done by a professional researcher, Diana 
Coben (2003), for the United Kingdom’s National Research and Development Centre for 
Adult Literacy and Numeracy. Coben says that “Adult numeracy is fast-developing but 
under-researched, under-theorized and under-developed,” (p. 117) and that “Evidence on 
the impact of numeracy tuition is sparse and unreliable” (p. 118). She goes on to say that 
much of the research is qualitative, with a broad range of research methodologies.  

In other countries, too, the research is scarce and often done with small groups of 
teachers and students, without control groups. Carole Torgerson, Jill Porthouse and Greg 
Brooks (2005) reviewed results of randomized controlled trials (RCT’s) that evaluated 
teaching strategies and pedagogies in adult literacy and numeracy. They concluded that: 

There is a dearth of rigorous RCT’s in the field of adult literacy and 
numeracy. The evidence is suggestive of a benefit of adult literacy and 
numeracy interventions; however, because of the heterogeneity of studies, 
the precise role of any intervention is uncertain and this finding may be 
undermined by the presence of substantial publication bias (executive 
summary).  

John Benseman (2003) in New Zealand reviews the little research in adult literacy done 
there, and finds that numeracy is an area "largely ignored" by researchers (p.12). In 
Canada as well, a search for studies that measured the efficacy of particular strategies or 
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pedagogies yielded nothing, although there were many reports of current practice, which 
I will discuss in the next section.   

Effective practice identified 
The call for RCT research by Torgerson et al (2005) notwithstanding, many practitioners 
and academics have written about effective numeracy instruction, and there are several 
organizations that have come together to study and improve numeracy instruction to 
adults, such as ALM (Adults Learning Mathematics) ANN (Adult Numeracy Network) 
and ALNARC (Adult Literacy and Numeracy Australian Research Consortium).  

Nearly all the literature I read, written since 1990, shows evidence of sharing a 
constructivist philosophy, based on the premise that learning takes place when a student 
actively constructs meaning from experience and from previous personal knowledge; the 
teacher facilitates activities and problem solving through which the student can construct 
knowledge and understanding. Rita Smilkstein (2002) suggests that that a cycle of 
learning that encourages students to construct their own knowledge in real, meaningful 
situations while reducing reliance on drill and worksheets, using student-centred rather 
than teacher-centred instruction, follows a learning pattern common to all human beings.  

Many people have written about the importance of a constructivist approach to teaching 
numeracy, and examples abound of instructors reflecting on their practice along these 
lines. I will mention a few here: 

Pat Rogers (1991) reported that she successfully changed her teaching practice at the post 
secondary level. When she began teaching math, she taught as she had been taught, 
through lectures and assigned practice. However, she began to develop some 
participatory activities, such as “think-write-pair-share,” class dialogue, board work, 
brainstorming, problem-posing, small group work, and proof generation. Later, as she 
describes in an article in Women’s Education des femmes, she was able to do a 
comparison study in which she taught a section (approximately 60 students) using her 
participatory methods, while two other sections of the same class were taught by two 
different lecturers using traditional methods. All three sections took the same final exam. 
Rogers concludes: 

[S]tudents in my section obtained more A grades overall (27% compared 
with 22% and 19%) and only 15% of students in my section failed the 
examination, where 24% and 30% failed in the other two sections. 
Covering the course content presented no difficulty for me or, judging by 
their examination success, for the students. Over two-thirds of them 
participated actively in the course in one way or another and only one 
student complained of discomfort (p. 41). 

John Dingwall (2000), in a discussion paper written for the National Roundtable on 
Numeracy at Queen's University (Dennery, 2000) discusses some success factors in adult 
numeracy programs in Canada: connecting math to real life experience, building on 
previous knowledge of students, and paying attention to math anxiety and other 
emotional factors. Other authors have similar lists of best practices, for example, Barbara 
Glass (2001) in Numbers Talk: A Cross-sector Investigation of Best Practices in LBS 

Numeracy, compiles responses about best practices from 32 programs in Ontario. 
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Respondents cited practices such as encouraging interaction between students, dealing 
with math anxiety, using manipulatives, relating math to real life experience, and 
encouraging discussion about math. Lisa Hagedorn, (2001) in Best Practice and 

Innovations from the Ontario Literacy Coalition, has a similar list: deal with math 
anxiety, ask students to write/talk about math learning, use manipulatives and real 
materials, and relate math to everyday life.  

Iddo Gal has written extensively about adult numeracy and adult numeracy instruction, 
often with other authors. In a manual written for numeracy practitioners, Adult Numeracy 

Instruction: A New Approach (Gal, Ginsburg, Stoudt, Rethemeyer, & Ebby, 1994), I 
found a comprehensive and coherent statement of principles, which I used as a basis for 
further investigation. Although similar principles are found in articles by many authors, 
the clarity and conciseness of the format given by Gal et al bring the principles into sharp 
focus and allow us to see how any particular practice we might examine lines up with 
them. I will list their answers to the question “How should we teach math and develop 
numeracy skills?” which they summarize as an “adopt a ‘whole math’ approach”(p. 7): 

1. Determine what learners already know about a topic before instruction. 

2. Address and evaluate attitudes and beliefs regarding both learning 
math and using math. 

3. Develop understanding by providing opportunities to explore 
mathematical ideas with concrete or visual representations and hands-
on activities. 

4. Encourage the development and practice of estimation skills. 

5. Emphasize the use of “mental math” and the need to connect different 
mathematical skills and concepts. 

6. View computation as a tool for problem solving, not an end in itself; 
encourage use of multiple solution strategies. 

7. Develop learners’ calculator skills and foster familiarity with computer 
technology. 

8. Provide opportunities for group work. 

9. Link numeracy and literacy instruction by providing opportunities for 
students to communicate about math. 

10. Situate problem-solving tasks within familiar, meaningful, realistic 
contexts in order to facilitate transfer of learning. 

11. Develop learners’ skills in interpreting numerical or graphical 
information appearing within documents and text.  

12. Assess a broad range of skills, reasoning processes and dispositions, 
using diverse methods (Gal et al., 1994, p. 2,ff). 

Effective practice not implemented 
Leo Hutchinson, a Vancouver ABE teacher, declares that most of his students “claim that 
one of the reasons they do not understand math is because their previous math teacher(s) 
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did not pay attention to them and their need to understand math better”(2000, p.1). These 
thoughts are echoed by Tom Nesbit (1995) of Simon Fraser University, who says, “the 
primary contributor (to low mathematical ability in adults) appears to be the poor 
teaching in school mathematics classrooms” (p.3).  

Nesbit made a study of three math classes at the introductory (grade 9) level in a 
community college in Vancouver, using surveys, interviews and classroom observation. 
Several key findings emerged:  

(1) Within the classroom, the teacher’s role was paramount—almost all 
decisions about classroom activities were made by teachers, and the 
learners’ influence was minimal; (2) the teacher and the textbooks adopted 
the role of supreme authorities of mathematical knowledge; (3) adult 
learners were assigned a passive role in their own education (Nesbit, 1995, 
abstract). 

This kind of teaching is in direct opposition to arguments that talk of the futility of the 
“banking model” of education, to use the term coined by Paulo Freire (1970). In a report 
prepared for the Ontario College Sector Committee for Adult Upgrading, two “best 
practices” of primary importance are cited: “the development and reinforcement of the 
learner’s control of his/her own learning” and “a shared power relationship in the 
classroom that contributes to self-esteem and self-confidence”("Best practices in 
managing the classroom to improve student commitment", no date, p.7). 

Nesbit (1996) describes the factors that influence teachers to teach using the banking 
model: first, the pervasive view of math as a formal system unto itself, so that everyday 
math is not “real math,” and real math is so abstract that it cannot be experienced; second, 
institutional emphasis on outcomes, competition and exams that make it clear to the 
student that these are the only valid criteria to measure learning, rather than some other, 
more personal or more relevant criteria.  

Mary Jane Schmitt challenges the use of workbooks in adult numeracy instruction, 
although they are widely used in ABE programs. In BC, especially where small class 
sizes or continuous intake means that content is delivered in a self-paced model, often the 
workbook or textbook is the only method of instruction. Schmitt points out that the 
workbooks’ focus on isolated instances of standard computations means that “success in 
the adult education math class is defined as the ability to follow successfully a sequence 
of rule-based instructions that can be matched to one-step or two-step word problems” 
(Schmitt, 2006, p. 1). 

Judy Perry, from Beat the Street, a Toronto literacy program, was a participant in a 
workshop given by Tom Ciancone, Flora Hood, and Joy Lehmann, where she gained 
some insight into her assumptions about teaching math:  

One thing that struck me during the workshop was the way that I teach 
numeracy training to new tutors. When I teach them how to teach reading 
and writing, I emphasize the pre-, during, and post-reading/writing 
activities that we, as competent readers, do unconsciously. I emphasize all 
the things the learner brings to the text, how to teach the learner to interact 
with the text as they read. Yet, I don't think about that when I'm teaching 
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numeracy! It's just math—I teach the formulae and the learner practices 
the skill ("Beyond worksheets:  Making math meaningful", 2005, p.12). 

Charles Brover, Denise Deagan, and Solange Farina (2000) discuss a similar finding 
amongst teachers taking part in the meetings of the New York City Math Enquiry Group 
(MEG). Teachers who taught English language literacy by taking into account learners’ 
backgrounds, and who tried to provide meaningful opportunities to learn reading and 
writing, nonetheless taught math by “abstract and alienating computational drills” (p. 3). 
After participating in MEG’s meetings and discussions, which focus on doing math 
problems and discussing the implications for math instruction, “one teacher wrote in her 
journal: … ‘More and more I see that good teaching that applies in BE [Basic 
Education]’s reading and writing is also true for math’” (p.3).  

The authors (Brover et al., 2000) state that that members of the New York City Math 
Exchange Group have been meeting since the early 90’s to do math and to learn “to think 
about math education in a new way… [W]ithout alternative models of learning math, 
teachers tended to teach math the way it had been taught to them” (p. 2).  

Barriers to implementation of effective practice 
When I looked at the list of points by Gal et al, above, and others like it, I thought “There 
is nothing new here—I’ve been hearing similar things for the past 15 years.” At first, I 
was relieved to find that the literature matched my thinking; I reflected that our problems 
with math instruction would be easily solved if everyone agreed on the solutions. Then I 
began to wonder why I had not changed my practice to bring it in line with these ideas, if 
I had known about them for so long, and why had others not changed their practice? Why 
didn’t I know even one person who was successfully teaching numeracy using those 
principles? I thought about how hard it is to implement those ideas, and how many times 
I had tried and failed. Then I began to find some other research and reflection that shed 
some light on the complexity of those simply stated ideas, and I began to recognize some 
of the difficulties that get in my way. In preparation for writing my manual for instructors 
of adult numeracy (Nonesuch, forthcoming), I met with eight groups of practitioners, 90 
people in total, and by and large their reactions were the same as mine—nearly all of 
them had heard of nearly all the strategies on the list, but they encountered many 
difficulties in putting them into practice.  

Gal et al (1994) suggest the possibility that many numeracy instructors do not follow 
these principles, even though they may agree with them, because of a lack of professional 
development activities to learn how to implement them, which may lead them to fall back 
on memories of their own math education and follow that pattern semi-automatically, or 
because of student resistance to these new ideas. I began to ask myself what kind of 
professional development would make it possible for instructors to successfully adopt 
these principles. What is at play here? What complexities, what hidden reasons lie at the 
base of the difficulties instructors face when they try to change their numeracy teaching 
practice? I began to search for literature that would shed some light on what makes it so 
hard to implement these strategies, and I will discuss my findings for some of the 
strategies below, using the language in the points set out by Gal et al.  
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Determine what learners already know about a topic before instruction.  
Lisa Hagedorn (2000) surveyed instructors in the Literacy and Basic Skills programs in 
Ottawa-Carleton school district, and found they recognized many strengths in their 
students, including estimation, mental calculations, fraction skills used in cooking, and 
other coping skills, yet students could not transfer these skills to doing calculations or 
word problems in class. We know that street math is not the same as school math, but 
both are valid maths. Why is it so difficult to use what students already know to make the 
connection to more formal math?  

Lindenskov and Hansen (2000) may shed some light on students’ reception of 
instructors’ attempts to build on prior knowledge. They report that they found three 
groups in the adult numeracy classes they looked at: first, a group that had no methods 
for figuring out particular kinds of problems, and wanted the teacher to give them a 
method; a second group who had their own methods and who weren’t interested in 
learning new ones; and a third group who had some methods of their own, but who were 
interested in other methods, and whose practice changed or expanded over the course of 
the class. If such diverse attitudes are found in other ABE classes, it is difficult to 
imagine what classroom practices would make it possible for all of them to make a 
connection between prior knowledge and new knowledge.  

Lindenskov and Hansen have more to say about the process of students adopting new 
knowledge, and adapting their habitual ways of doing math. One of their students decided 
to continue to use a method learned in class for figuring percents after a better-educated 
colleague at work confirmed that her “new” method was commonly used at that 
workplace. “For us it is obvious that the social reaction to new methods from education is 
overwhelmingly influential, e.g., as to whether the adults will remember, appreciate, and 
use new methods and knowledge or not” (Lindenskov & Hansen, 2000, p.5). Although I 
did not find any other published support for this conclusion, one of my colleagues 
confirmed it by saying that her students were unlikely to adopt her (more efficient) 
methods for doing calculations if they were different from methods used by friends and 
family who helped with homework. “My Auntie does it this way,” is a frequent reason 
her students give for sticking to the old ways. What implications does that conclusion 
have on classroom practice? Surely, it is a question of more than simply finding out what 
students know and building a bridge to more standard practice, or to more advanced 
concepts.  Perhaps we need posters of singers and sports heroes announcing that they 
mentally divide by two instead of using a calculator to find 50% of something! 

Address and evaluate attitudes and beliefs regarding both learning math and using 

math. 
Math, far from being soulless, logical, and cold, is a subject fraught with emotions. The 
emotions do not come from the numbers, but from the people working with the numbers, 
and people coming back as adults to learn math are people who are often scared and 
angry, confused and humiliated, unconfident and passive, people, in fact, who hate and 
fear math. Many theorists say that people who are in the grip of negative emotions cannot 
deal with learning something new. One of the features of Thomas Gordon’s Teacher 

Effectiveness Training (1974), for example, and of Saskatchewan NewStart Life Skills 
(Core lessons for life skills programs, 1994) is that the teacher/coach needs to help the 
student deal with the emotions, at least for the moment, so that learning can proceed. 
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Moreover, Rita Smilkstein (1991) says that hormones associated with positive emotions 
enhance learning while chemicals associated with negative emotions inhibit learning—
quite a challenge for the numeracy instructor, not only to deal with the negative emotions, 
but also to replace them with positive feelings in order to promote learning. 

The concept of math anxiety, and strategies for dealing with it, have been around for 
many years; sometimes it is dealt with in the counsellor’s office, sometimes in the 
classroom, often not at all. Fred Peskoff (2000) reports on a study he did of adult students 
and their use and evaluation of strategies for dealing with math anxiety. Strategies were 
designated either as “approach” strategies, which met the problem head-on (such as don’t 
fall behind in homework; ask the instructor; let the instructor know when you don’t 
understand; find extra study/review time), or as avoidance strategies, which helped the 
student avoid the feelings of anxiety (such as relaxation techniques or leaving the room to 
alleviate stress). The approach strategies were viewed by all students as more useful than 
the avoidance strategies, and talking to a counsellor and working with a tutor were seen 
as least useful of all. However, the students most in need of help were the ones least 
likely to take effective measures to get it.  Low anxiety students tended to use the 
approach strategies more than high-anxiety students, who more frequently used the 
approaches seen by all students as less useful. So simply teaching techniques is not 
enough, if anxiety is preventing students from using the most efficacious strategies for 
reducing anxiety. The author also suggests that using a tutor may be seen as not useful if 
the tutor uses different explanations or strategies than those taught by the instructor, and 
points to the need for tutors and instructors to collaborate.  

Bonnie Fortini (2001) decided to use the theory of multiple intelligences to help students 
deal with math anxiety, and gave each student an MI assessment, talked in class about 
math anxiety and about MI, and worked with students to develop strategies to deal with 
anxiety based on their MI strengths. In the second and third semester, she had to cut back 
on the MI work, but, nonetheless, she reported favourably on the value of MI in helping 
students overcome math anxiety, and found that her own teaching also changed for the 
better as she grew more comfortable working with types of intelligences that were 
different from her own. It is not clear that the MI theory and practice in themselves 
reduced anxiety, or if simply gaining some control over their learning by understanding 
themselves more clearly led to a reduction in anxiety and a more positive attitude to 
learning math. 

Develop understanding by providing opportunities to explore mathematical ideas with 

concrete or visual representations and hands-on activities. 
The use of base ten blocks, Cuisenaire rods, and various other concrete models for 
operations with whole numbers, decimals and common fractions have long been available 
commercially, and instructors have been making and using their own as well, from beans 
and paper clips for counting, to playing cards to teach addition and subtraction, to more 
elaborate materials. Beth Marr (2001) observed that working with real objects (cans and 
bottles for measuring volume, for example) fostered discussion, made for a livelier 
classroom, allowed students to bring prior knowledge to engage in new experience, and 
seemed to activate memory. “The lasting memories appeared stronger than any that the 
words and diagrams traditionally used on worksheets had provoked, since student’s 
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speech in later tasks contained many direct references back to prior visual memories” (p. 
218). 

Yet the use of manipulatives, which on the surface seems so likely to lead to student 
success, brings with it unexpected difficulties.  The instructor must bring a light touch, a 
sense of ease with manipulatives and with math concepts, and an ability to deal with 
students’ feelings about using them. Lisa Hagedorn (2004) worked with classroom 
teachers to make learning materials to suit their students’ needs, and to share the 
materials with other instructors. Their material, as well as a report on their activities, is 
available online. Hagedorn muses on the process of fitting such activities to a particular 
class: 

This diplomacy of teaching – when to direct, when to step back, what to 
control, what to leave alone, how much of a path through an activity to 
clear for the learner, and when to ask him/her to bushwhack, is 
fundamental and fascinating (2004, p.21). 

In my own teaching, I have found that many students resist using manipulatives, thinking 
them “childish” or “not real math,” and in some cases they refuse to use them. In any 
case, this resistance has to be taken into account before students can gain from using 
concrete materials. I have developed some ways to work with their resistance, including 
acknowledging their feelings, using trial runs of material, and including students on the 
team of decision makers (Nonesuch, 2005b). These tactics, however, are outside the 
bounds of what is considered “normal” classroom practice.  

It seems likely that workplace programs would face the least resistance to using real 
objects to teach concepts, and indeed, in an interview with Literacies, Sue Grecki talks 
about her work with students in the trades who need help with math:  

So we’d work with plumbers using a piping system drawing, and figure 
out the elbow degree and the length of the travel. Then we’d go into the 
shop and start measuring and cutting pieces to see if they work. That’s 
when they realize something worked or that they were looking at setting 
up the problem the wrong way ("Making math concrete (and iron, and 
plastic): Numeracy and construction trades", 2005, p.15).  

Another way of overcoming student resistance to using hands-on strategies is to give 
them some knowledge of and control over the learning process. For example, Meg 
Constanzo (2000) says that students who had been taught about multiple intelligence 
theory and who had had a chance to find out their own strengths were more willing to use 
alternate strategies (such as drawing diagrams or using manipulatives) which were 
appropriate to their strengths, but which they had resisted previously.  

Resistance to such methods comes also from instructors, who, with students, reckon on 
the need for drill and practice and worry about the perceived increase in time needed for 
“discovery methods.” Kathy Safford writes of her own experience teaching basic math 
and on the “math wars” about the best way of teaching math to children; she has modified 
her initial zeal for a strictly constructivist approach for adult learners to include space for 
drill and practice: “If students have constructed and own the rules they are practicing, 
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they can reconstruct them at some later time. Practice diminishes the need for such 
activity and releases their brains to engage in more constructive work” (Safford, 2000). 

Encourage the development and practice of estimating skills. 
Why is it difficult to develop students’ skills in estimation? Although I did not find any 
writing on this topic, it seems to me if students can make reasonable estimates, and if 
they value the usefulness of the strategy, it is a testament to their understanding of 
mathematical concepts and the particular context of the problem they are working on. Is 
it possible to foster estimating skills without including in your practice many of the other 
principles in Gal’s list? 

Emphasize the use of “mental math” and the need to connect different mathematical 

skills and concepts. 
Most instructors are aware that many students have their own methods of making 
computations mentally, although for the most part they view them as substandard and are 
slightly ashamed of them. (My students often hide their methods from me.) Writing in the 
newsletter of Adults Learning Mathematics, Janet Duffin (2002) suggests that we should 
encourage students to develop their own methods and to share them with the group as a 
way of having their own methods respected and of learning from other methods, thus 
improving competence and confidence. Even so, she recognizes the temptation to 
intervene when students are working out their own method, because “our instinct is to 
weigh in and help them” (p. 7). Sandra Wilson and Alison Tomlin (1999), numeracy 
student and researcher, reported on a piece of research they undertook together, to 
interview other people to discover what method they used to do sums. Doing formal 
research goes further than Duffin (and many others) suggest. Such activities again put 
students in control (they are the researchers) and give them opportunities to see in real 
life the variety of approaches and strategies people use. Students reach a better 
understanding through collecting, organizing and understanding their data, and practice is 
embedded in a real research process instead of in worksheet drills. However, the idea of 
doing such a research project, especially the act of writing it up and publishing the 
results, would be considered outrageous by most instructors I know, wasteful of time and 
of dubious value in light of the perceived rigidity of program content in most ABE 
programs.  

Develop learners’ calculator skills and foster familiarity with computer technology. 
Catherine Cantrell (2000) finds putting students in front of computers to use math 
educational software "boring and potentially pointless" (p. 1) because students are 
isolated from other students and from teachers, and there is often no relevant context in 
which they can use skills as they learn them. In this article she tells how she uses 
everyday software such as spread sheets and graphs, the internet, PowerPoint, web page 
creation, etc. to teach math while providing students with a group experience, as 
suggested by the next principle.  

Provide opportunities for group work. 
Beth Marr (2001) writes about the many benefits of group work. She observed that when 
students were given a collaborative task they started on a more equal footing and 
explored meaning together, rather than one being more expert than another. The many 
tasks necessary for a group to function (keeping time, maintaining relationships, bringing 
in outside knowledge) means that people with lower math skills can make a positive 
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contribution to the group while learning from others. Furthermore, she says, “I believe 
that for many adult students there is an unspoken social need that is integral to their 
return to study. Leaving the isolation of the home and mixing with others seems an 
important part of the new learning experience”(Marr, 2001, p.217).  

An interesting discussion with my colleagues at Malaspina University-College led to an 
illuminating discovery about students’ reactions to doing group work. Some teachers 
were talking about how hard it was to get students to do group work: they drag their feet, 
complain, and say they’d rather work on their own in their books. Iris Strong, who 
teaches ABE at the Nanaimo Campus of MUC, speculated that her students thought 
working in groups was inefficient and time-consuming. She thought that they wanted to 
work by themselves in order to make faster progress. The following week, she led 
discussions in two different classes, and reported that her hypothesis was wrong: 

Then I asked them to describe what happens inside their heads and hearts 
when they’re asked to participate in an activity that doesn’t feel natural to 
them, or one that they simply do not LIKE doing.  

Well, I was wrong about thinking it was a time issue! At least for the 
students who responded in these two classes, the common denominator 
was that taking part in some of these activities involves interaction, and 
during interaction, others can see that they are dumb, stupid, and not as 
smart. Fear of exposing ignorance seems to be the motivator for these 
folks to want to do their own individual work. The cool thing is that they 
were all quite comfortable sharing that, and laughed about acknowledging 
it to each other. We’ve had a couple of wonderful sharing times on this 
topic in each class!! (E-mail, February 23, 2006). 

What are other difficulties in using group work in ABE math classrooms? The instructor 
must teach more than simply math. In their introduction to a collection of several adult 
numeracy programs in Australia, Penny Halliday, and Beth Marr state, “Adult students in 
particular need to be taught how to work cooperatively in an enjoyable, non-competitive 
and supportive environment” (1995, p.9). Facilitating groups is a skill that does not 
necessarily come with every math teacher; as we have seen, literacy instructors often do 
not bring their skills in doing “whole language” to their work as numeracy instructors. 
Some instructors do not themselves know how to work co-operatively, or how to foster a 
non-competitive environment in their own workplaces, so can hardly be expected to teach 
it or encourage it in their students. Moreover, professional development for ABE/Literacy 
teachers does not often take the form of increasing their group facilitation skills, or 
applying methods to teach students to work co-operatively.  

Link numeracy and literacy instruction by providing opportunities for students to 

communicate about math. 
Beth Marr (2000) found that students needed "opportunity to speak" and "means to 
speak" (understanding of concepts and ability to use math terminology), and that the 
usual methods based on preparing students to complete worksheets provided neither. She 
used strategies to increase opportunity to speak such as group and pair work using 
manipulatives, discussion and sometimes writing about math thinking, and rehearsal for a 
report to larger group; participation in these activities increased students interest in 
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acquiring appropriate language to express their ideas. Many of these activities that 
encourage students to talk about math, however, involve working in a group, and the 
instructor must deal with the difficulties outlined in the previous section if students are to 
have the opportunities Marr suggests are useful in learning math. 

Situate problem-solving tasks within familiar, meaningful, realistic contexts in order to 

facilitate transfer of learning. 
The crux of the matter seems to be in determining what is a realistic context for students. 
In practice, it often means that instructors pick topics that they think are realistic, such as 
budgeting or shopping. However, Alison Tomlin, in her article “Real Life in Everyday 
and Academic Maths” challenges the idea that instructors should determine the topics to 
be covered, and challenges especially the idea that instructors can take real life situations 
and turn them into math problems that relate to students’ lives. She gave an example of 
paying an electricity bill in England, which has no relevance in the Canadian context. 
However, a comparable situation from my own teaching will serve to make the same 
point. 

When I first began teaching numeracy to adults, I often ran across texts with shopping 
“problems” for students that required them to figure out which of two or three options 
was the best buy—the best buy always being the cheapest. Yet, as I got to know my 
students, they told me that, if you have only $5.00 to spend, it is irrelevant to figure out 
whether it is cheaper to buy 500 grams of something for $4.00 or a kilogram for $6.98. 
How to make your money or your food stretch to the end of the month is not a math 
problem if you live with a drunk who takes all the money to buy booze, or who brings his 
buddies home to eat up the food you were hoping to serve the kids the next day. Tomlin 
says: 

In talking as though we ([instructors] and policy-makers) know or can 
predict students’ everyday lives and maths problems, we risk being 
profoundly patronising. What is real, everyday or relevant, or has 
meaning, depends on things far more complicated than [we] can know 
(Tomlin, 2002, p. 12). 

Johnston, Baynham, Kelly, Barlow and Marks (1997) echo this caution in their report on 
a study of young students in Australia, many of whom have their own reasons for 
choosing not to budget their money. “If we are not careful, we will interpret this choice as 
lack of knowledge or even moral inadequacy” (p. 113). The authors suggest we need to 
ground ourselves in the real uses students make of money—selling/buying drugs, making 
bets, making things, protecting themselves from being cheated. 

“…(Numeracy instructors) themselves need to be truly at home with the 
mathematics their students need…. they need to be able to understand 
something about the structural constraints of society and the possibility of 
agency, about how students make their own mathematical lives, even 
though it may not be in circumstances of their own choosing” (p.131). 

As a final note on this subject, Tom Ciancone (1988), discounting the importance of 
realistic contexts in teaching math, says that getting help with everyday problems is only 
one of four possible motivations of adult students, and that “success in mathematics is as 
great a motivating factor for learning as relevance” (p. 2).  
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Assess a broad range of skills, reasoning processes and dispositions, using diverse 

methods. 
It is a truism in educational circles that you teach what you test for; if you want to change 
classroom practice, you have to change the way learning is tested and measured. Yet in 
programs such as Tom Nesbit (1995) studied, the text was of paramount importance, and 
nearly every math text comes with a battery of pre- and post tests, chapter tests, mid-term 
and final tests. So long as programs and instructors are tied to a text and its tests, it will 
be impossible to implement the constructivist strategies under discussion here. Members 
of a discussion group at the National Roundtable on Numeracy (Dennery, 2000) listed 
some of the problems with testing and accountability from their experience in the 
Canadian context. They stated that assessment should be based on “actual performance of 
authentic materials and tasks” (p. 4), but recognized the difficulty this raises in reporting 
to funding agencies, for example. They wondered if authentic assessments could be set 
up and reported so as to meet the requirements of external accountability.  

Barbara Glass cites one method of assessment recently developed by the Literacy and 
Basic Skills Program in Ontario, a “demonstration.” “These cumulative activities are 
intended to involve learners in real-life tasks that incorporate the skills and knowledge of 
several modules or units of study” (Glass, 2001, p. 60). More than 100 demonstrations 
are available online at the AlphaPlus website (http://demonstrations.alphaplus.ca). Their 
use requires more teacher time and preparation than a paper-and-pencil test, and the 
results are less easily understood by someone outside of the process.   

M. Elaine Harvey (1991) goes a step further in rejecting traditional assessment practices:  

Evaluating students through testing, assigning marks, and ranking, is a 
patriarchal approach. In feminist teaching, marks are generally not 
determined by one do-or-die exam. Marks for work during the term have 
become increasingly important. But let's not even assume that marks are 
necessary. We could use grades or even assign complete/incomplete 
status. Why do we even labour under the assumption that evaluation is 
essential to education? It is not essential to learning. In fact, it may even 
be detrimental (p.14).  

An emphasis on “authentic assessment” or on self-evaluation of process runs counter to 
the current climate in adult basic education, where government departments and other 
funders demand more and more detailed and standardized outcomes evaluation.  

Who is in charge here? 
Many of the strategies reviewed above include an element of student control of their 
learning, or of shared power between teacher and student, although neither was evident in 
the study by Tom Nesbit (1995) referred to earlier. There, teachers maintained control 
over nearly every aspect of the class, and the students were reduced to passivity in the 
face of the authority given to teacher and text. In a series on improving student retention, 
a report prepared for the College Sector Committee for Adult Upgrading, a committee of 
the Association of Colleges of Applied Arts and Technology of Ontario, states explicitly:  

The management of learning should lead to the development and 
reinforcement of the learner’s control of his/her own learning; 



More Complicated Than It Seems  15 

and, 

The management of learning should strive to build a shared power 
relationship in the classroom that contributes to self-esteem and self-
confidence ("Best practices in managing the classroom to improve student 
commitment", no date, p. 7).  

Thinking about learners being in charge, I was stunned when I ran across this 
introductory phrase in an article by Lindenskov and Hansen (2000): “According to 
Danish legal provision, the learners participate in the ongoing planning of the course. In 
Eigil’s class, two themes were democratically chosen” (p.5). It is impossible (but 
tempting) to imagine all the shifts that would take place if such a law were enacted in 
British Columbia. 

Nicol and Anderson (2000), in a study with mildly learning-disabled adults, found that 
two groups of students who had teacher-led instruction and teacher-plus-computer-
software instruction, respectively, improved more than the control group. The authors 
suggest that the improvement in the group that used computer-assisted instruction with 
the teacher may be influenced by a change in teacher-student relationship (more 
collaborative and less confrontational) as much as by the actual software (p. 191). 

Haacke, van Duin, and de Laat (1997) describe an individualized math program in the 
Netherlands, where many students are on individual paths, yet they do not follow blindly 
modules set out for them by instructors, and which integrates many aspects of group 
work, mental math, and practical problems. Instructors face a difficult challenge in this 
setting: “For us educators our way of thinking has to be reversed. Instead of suppliers 
who offer what they think is necessary, they had to become educators who listen to the 
demand so the education can be adapted to what is needed” (p. 3). Moreover, in the 
Canadian context, they would have to overcome years of conditioning that encourages 
students to take a passive, rather than an active, role in their education. 

Mike Baynham (1996) investigated the role language plays in the adult classroom, 
particularly how humour may produce a more egalitarian relationship between teachers 
and students. A shared power structure may be the hardest to implement of all the 
principles of adult numeracy instruction under discussion here. It is hard for instructors to 
give up control.  It is hard for students to accept control and hard for them to believe that 
the teacher is willing to give up control.  The transition from the status quo to some new 
way of being may be the hardest of all. I have reflected on my own practice in this area in 
an article published in the RaPAL journal (Nonesuch, 2005a).  

Summary 
Although some academic researchers say that little statistically valid research has been 
done about adult numeracy instruction, many instructors and others in the field have 
reflected on their practice and on their observations, to come up with a consensus about 
what “best practice” looks like. There is general agreement on many of the ideas about 
best practice, although still some controversy on some of the details. 

Yet, even with this general agreement in principle, ABE/literacy math classes are still 
taught in the old-fashioned way, with power centered in the teacher, and the text and the 
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test governing the content and method. A little closer look at the principles shows some 
barriers to implementation by teachers. Many of them ask both teachers and students to 
step out of their usual roles, and change is always difficult. Some of them ask teachers to 
make themselves vulnerable, to deal with emotions and respect their students’ knowledge 
of things the teacher does not and possibly cannot know.  Some of them ask students to 
be open about their lack of knowledge and skills, lacks they have been hiding for years.  
Some of them are in conflict with the needs and assumptions of administration and 
funding bodies, which want to count completions and register grades. I have tried to 
elaborate the complexities of some of them, to try to see what is there that prevents them 
from being easily and widely adopted. All in all, making change in adult numeracy 
instruction is much more complicated than it seems on the surface.  

Conclusion 
My intention here has been to push the edges a little of the principles elaborated by Gal et 

al, and other writers, but not to deny their validity, because I think they are valid. I want 
to incorporate them all into my practice, and I’m curious about what makes it so difficult. 
I think that we have to name the problems of implementation more clearly before we can 
adopt these suggestions, before we can change our practice to bring it into line with 
research and theory.  

Resistance to change, both from instructors and students, and the difficulty of moving the 
locus of control from instructor to student are barriers to changing our practice. They 
seem to be circular; which comes first?  A remark from the National Roundtable on 
Numeracy seems to focus the dog-chasing-its tail aspect of this difficulty:  

While focus on a grade mark equates learning achievements with external 
approval, the authentic assessment encourages the learner to look within 
and take satisfaction in personal accomplishments and skills-building 
(Dennery, 2000, p.4).  

If the learner is to look within and take satisfaction from what s/he finds there, instructors 
must find a way to put into practice those principles and strategies I have been discussing 
here. If students are to learn to construct meaning from their math classes, instructors 
must learn to facilitate activities that will foster such a construction of meaning. Further, 
someone must find a way to encourage and teach instructors to undertake this task. And 
somehow, ABE/numeracy students must come to expect and demand control over their 
learning. 

How to implement best practices; how to get instructors enthusiastic; how to get students 
involved—these are the difficulties we have yet to overcome. It is clear that simply 
saying “do this, do that” will not enable instructors to improve their practice; there is a 
need for investigation into the specific context of adult numeracy instruction to figure out 
what gets in the way of implementing such best practices. Investigators, however, must 
be revolutionaries in their approach, for a revolution in practice is necessary. 
Investigators must be willing to look at the factors that make instructors resistant to 
change. They must be willing to look at why instructors and administrators are unwilling 
to have the messiness of real numeracy education come into their classrooms. Finally, 
they must be willing to work with students to find out what invitations to participate need 
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to be sent, how bridges can be built, what it will take for students to believe that we are 
willing to change, and that the change will be beneficial.  
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